## Preprints

- Q.G. and Hiroshi Matano. Propagation dynamics of solutions to spatially periodic reaction-diffusion systems with hybrid nonlinearity. HAL arXiv
- Jean-Baptiste Burie, Arnaud Ducrot and Q.G. On the competitive exclusion principle for continuously distributed populations. HAL arXiv
- Q.G., Jacques Demongeot and Pierre Magal. What can we learn from COVID-19 data by using epidemic models with unidentified infectious cases?. medRxiv
- Matthieu Alfaro, Q.G., Denis Roze and Benoît Sarels. The dynamics of coupled genetic incompatibilities in parapatry. HAL arXiv
- Q.G., Zhihua Liu, Pierre Magal and Robin Thompson. Estimating the last day for COVID-19 outbreak in mainland China. medRxiv

## Publications

- Q.G., Jacques Demongeot and Pierre Magal. A robust phenomenological approach to investigate COVID-19 data for France,
**Math. Appl. Sci. Eng.**, accepted. DOI medRxiv - Xiaoming Fu, Q.G. and Pierre Magal.
*Sharp discontinuous traveling waves in a hyperbolic Keller-Segel equation*.**Math. Models Methods Appl. Sci.**31 (05), 2021, pp. 861-905. DOI arXiv - Q.G. and Pierre Magal.
*Clarifying predictions for COVID-19 from testing data: The example of New York State*.**Infect. Dis. Model.**6, 2021, pp. 273-283. DOI medRxiv - Jacques Demongeot, Q.G. and Pierre Magal.
*SI epidemic model applied to COVID-19 data in mainland China*.**R. Soc. Open Sci.**7, 2020, e-print 201878. DOI medRxiv - Xiaoming Fu, Q.G. and Pierre Magal.
*Existence and uniqueness of solutions for a hyperbolic Keller–Segel equation*.**Discrete Contin. Dyn. Syst. Ser. B**22, 2020. DOI - Jean-Baptiste Burie, Arnaud Ducrot, Q.G. and Quentin Richard.
*Concentration estimates in a multi-host epidemiological model structured by phenotypic traits*.**J. Differential Equations**269 (12), 2020, pp. 11492-11539. DOI HAL arXiv - Q.G., Pierre Magal and Ousmane Seydi.
*Unreported cases for Age Dependent COVID-19 Outbreak in Japan*.**Biology**9 (6), 2020, e-print 132. DOI medRxiv - Xiaoming Fu, Q.G. and Pierre Magal.
*A cell-cell repulsion model on a hyperbolic Keller-Segel equation*.**J. Math. Biol.**80 (7), 2020, pp. 2257-2300. DOI HAL arXiv - Léo Girardin and Q.G.
*A Liouville-type result for non-cooperative Fisher-KPP systems and nonlocal equations in cylinders*.**Acta Appl. Math.**170, 2020, pp. 123-139.DOI HAL arXiv - Q.G.
*Singular measure traveling waves in an epidemiological model with continuous phenotypes*.**Trans. Amer. Math. Soc.**371 (6), 2019, pp. 4411-4458. DOI HAL arXiv - Matthieu Alfaro and Q.G.
*Pulsating fronts for Fisher-KPP systems with mutations as models in evolutionary epidemiology*.**Nonlinear Anal. Real World Appl.**42, 2018, pp. 255-289. DOI arXiv - Q.G. and Gaël Raoul.
*Existence and qualitative properties of travelling waves for an epidemiological model with mutations*.**J. Differential Equations**260 (10), 2016, pp. 7115-7151. DOI HAL arXiv - Q.G., Gaël Raoul and Sylvain Gandon.
*Virulence Evolution at the front line of spreading epidemics*.**Evolution**69 (11), 2015, pp. 2810-2819. DOI

## Book chapter

Q.G. and Sébastien Motsch.*Kinetic equation and self-organized band formations*, in

*Active particles, Vol. 2.*, pp. 173--199, Model. Simul. Sci. Eng. Technol.,

*Birkhäuser/Springer, Cham*, 2019. arXiv